Coupling Interaction Specification with
Functionality Description

A. Kameas! S. Papadimitriou!+? G. Pavlides!?3

! Dept. of Computer Engineering and Informatics, Univ. of Patras, Patras
26110, Greece

2 Computer Technology Institute, 3 Kolokotroni st., Patras 26221, Greece
3 INTRASOFT SA, 2 Adrianiou st, Athens 12515, Greece

Abstract

In this paper, the solution used in the context of SEPDS (2 Software
Development Environment) to the problem of combining interactive be-
havior specification with fanctionality description of a distributed inter-
active application is presented. This solution consists of combining two
specification models: IDFG to describe the interactive aspects of applica-
tions developed with the system and EDFG to describe their functionality.
Both these models are data flow graph based and can be classified as pro-
cess models. They use "actors” to represent performers of processes and
"links” to represent data buffering and exchange, as well as roles and
different perspectives. Although the two models have many semantical
differences, they also have many common properties, that is why they can
be straightforwardly combined in a process that enables designers think in
users terms. To this end, action actors are used to Icpresent the functions
supported by the application, and context actors to represent the appli-
cation user interface functions. In addition, links are used to represent
the events that take place in the system (these may be user or system
actions), the effects that these have on the screen, the context into which
these take place and the goals that may be achieved using the application.
Furthermore, the reusability and prototyping tools of SEPDS can be used
to construct and test the application design.

1 Introduction

The need to build increasingly complex software systems has led in the devel-
opment of SDEs (Software Development Environments) [6, 9], which not only
provide assistance in software development, but also guarantee a standard level
of quality, as they progressively integrate tools that support more phases of the
software development process. With the evolution of technology, the need to
build highly interactive applications that address non—computer expert users
has recently come up. Despite the attempts, however, there still exists a gap be-
tween the designers’ and users’ model of an interactive application, due mainly
to the unsuitability of the traditional application development techniques for the
specification of interaction and the construction of user interfaces [11], and to

i[:]:ie difficulty of combining an interaction model with an application data model
1].

In this paper, a solution that has been applied in the context of SEPDS,
(Software Environment for the Prototyping of Distributed Systems) system [9],
which is an engineering framework for the prototyping of dlSt'l.'lbuth systems,
is presented. This solution consists of using two distinct specification models:
EDFG (Extended Data Flow Graph) for the specification of application func-
tionality, and IDFG (Interactive Data Flow Graph) for the specification of the
interactive behavior of this application. Both these models are based op Data
Flow Graphs (DFG), and therefore, can be straightforwardly combined. In addi-
tion, they are used in much the same way, and as a consequernce, designers that
use SEPDS do not have to use additional effort to learn two different specifica-
tion languages, while the prototyping subsystem of SEPDS is able to produce
highly—interactive application prototypes.

EDFG and IDFG belong to the class of process models [4]; more specifically,
they can be proved equivalent to Petri-Net models. Process models, in general,
use the notion of a ”process” (which is a set of partially ordered steps called
”process elements”) to represent an action towards some *goal”. In both EDFQ
and IDFG, actors form the performers of process elements (the notion of agents
is generally used in process models), by representing computations of arbitrary
complexity. Links are used as a form of role representation (that is, to determine
which set of process elements will be executed), as well as for the transportation
and buffering of data, and the representation of screen effects that computations
may have. Thus, these models represent explicitly the functional (i-e. what
process elements are being executed and what flows of information sre used by
them), behavioral (i-e. conditions for the execution of process elements and how
these interact) and organizational (i.e. where and by whom the execution of pro-
cess elements takes place) perspectives of an application, while they may be used
(that is, they include the appropriate constructs) for the representation of infor-
mational (i.e. explicit representation of the informational products consumed or
produced by a process) perspective as well.

Process models usually distinguish between two enactors of a sequence of
processes: users (in this case, the sequence is called a ”script”) and system (in
this case, a ”program”). This distinction is also used in this case, by allowing
the modeling of both user and system actions as actor execution enablers. In
addition, an explicit representation of goal-subgoal decomposition of user actions
is used as the means to determine permitted states that may be reached from
the current state. In this way, designers are "forced” to create an application
that will be functioning close to the way users think when using it.

In SEPDS, EDFQ serves as the data, model, while IDFG is the event model.

2 EDFG: The Data Model

The EDFG model [9] is a trade—off between formal models (e.g. [T]cg and icon
oriented models (e.g. [3]). According to the EDFGQ approach, a distributed
application is described as a set of communicating graphs, with several commu-
nication primitives defined to support this communication.

An EDFG is a bipartite graph consisting of a set I of links and a set A of
actors. Actors represent the computational components, while links are used
for data buffering and transportation. There also exists a set of directed arcs
which connect actors to links and links to actors. A link gives input to an actor
if a directed arc exists from the link to that actor; a link receives output from an
actor if a directed arc exists from that actor to the link. The links can contain

daisy
Rectangle

‘tokens, which are value structures of arbitrary complexity. The number of tokens
contained in all links at a given instant may be used to define the state of the
EDFG, which is also called "EDFG marking”.

An actor a is defined as a T-tuple consisting of:

o the set of input links IFS(a)
o the set of output links OF S(a)

e a precondition function PRE(a), which gives the conditions that must
hold (that is, which of IFS links must contain tokens) for an actor to be
executed

e a posicondition function POST(a), which gives the conditions that result
from the execution of the actor (that is, which of OFS links will receive
tokens)

e a funcition FUN(a), which represents the computation performed by the
actor

a descriptor TY PE(a), which describes the level of actor complexity., and

o a descriptor §(a), which refers to the execution time of the actor

Links are typed: a link type describes a set of actor links that are allowed to
contain tokens of the same data type. When the designer constructs an EDFG,
all the components of an actor (with the possible exception of §(a)) must be
defined. Then links may be defined, with the system performing consistency
and type-matching checks.

An actor is executed (”fires”) when a subset of its input links defined by its
PRE function contains tokens; all these tokens are then removed from the input
links, while tokens are placed in the output links that are specified by the actor
POST function. Each actor firing modifies the distribution of tokens on links
and thus produces a new EDFG marking (a new state).

3 IDFG: The Interaction Specification Model

IDFG combines features from both state-based (e.g. [5]) and user—oriented
interaction models (e.g. [2]). It supports the specification of all interactive
features of an application in a non—technical way and permits the construction of
specialized interactive applications. To achieve this, description of the elements
of the screen has been separated from the specification of actions that may be
performed with these elements, leading to a more user—centered design.

Each IDFG [8] is also a bipartite graph. Nodes are of two different types:
links and actors. Actors represent the actions that the system offers to its users
and the goals they may achieve, while links are used to describe conditions.
Directed arcs connect actors to links and links to actors. Actor firing and actor
marking notions are also used in IDFG as they have been defined (although in
the following, an equivalent definition of state will be presented).

Each actor consists of two parts: the behavioural part, which is made up of
rules, and the functional part, which contains code segments. For every rule of
the behavioural part, there exists a set of left—hand—side conditions that must
hold for it to fire (the PRE function of the actor), and a set of right-hand side
conditions that result from the firing (its POST function). The set of the left—
hand-side conditions of all links make up the IFS of the actor, while the set

daisy
Rectangle

of the right-hand-side conditions of all links make up its OFS function. The

code segments of an actor correspond to the objects that implement the actor’s

function FUN. Two other model properties are inheritance and abstraction. To -
incorporate inheritance, the component IN H ERITS (@) of an actor a is used to
represent whether an actor inherits the functionality of one or more classes of

actors (multiple inheritance), or is a primitive one (used in place of component

TY PE(a) of EDFG; component §(a) is not yet used in IDFG). Abstraction

can be used to improve reusability when the specified user interface will be

implemented by the system.

Links are typed Smainly to distinguish between the components of a situa-
tion). The types of links currently used by SEPDS are contained in the set {
user action, system action, object condition, goal, incommunication, outcommu-
nication }. To improve expressibility, more link types can be added to this set.
Links are used to describe different actor roles (e.g. "goal” links ®assign” actors
to user plans) and perspectives with respect to application functionality (e.g. -
the organizational perspective is represented by "action” and ”communication”
links). :

Sgate transitions take place only as a consequence of an event (that is, a

user or system action), and every actor must have a link of type "user action”
or “system action” in its IFS. In addition, each user action must belong to a
goal-leading sequence, that is why, each actor has also a Jink of type "goal” in
its IFS and OFS (a ”goal” link in the OFS is used to signal successful goal
achievement). Therefore, we explicitly represent all the actions (events) that
may take place in the system, as well as all the goals that may be achieved using
it. In addition, we can use several links of type "object condition” to represent
the current state of the screen objects, thus accounting for the screen effects of
user and system actions and conforming with the "principle of observability”
11].
[]’I‘o transparently support interaction across distributed contexts, as well as
to model user—system communication, we use a special link type, the ”communi-
cation” type. In effect, there exist "incommunication” and ”outcommunication”
link types to account for the direction of communication. Actors that contain
rules that result in intercontextual communication are called ”communication
actors”. On the other hand, links of type "system action” are used to model
system-initiated communication among actors of the same graph.

4 Combining the Models

EDFG and IDFG have many common properties that make their combination
rather straightforward: they use the same specification methaphor, while based
on the same underlying mathematical model. This leads to a uniform treatment
by the tools of SEPDS, and consequently facilitates the efficient prototyping and
production of distributed interactive applications. In both models, inheritance
and abstraction are incorporated using ”templates”, which are abstractions of
the behavior of actors based on the description of their input and output links
and firing pre- and postconditions. Templates may be archived and reused based
on this description; they may also be combined to form abstractions of complex
actor behavior (note that template combination is a different process than actor
combination that is described in the following).

However, there also exist differences between the two models, that concern
mostly their different semantic interpretation, and their distinct role in applica-
tion specification. In EDFQG, links represent data and consequently, link types
represent data types, while actors represent application functions. In IDFQ,

daisy
Rectangle

links represent events and link types represent different perspectives, while ac-
tors represent user interface functionality. . .

Thus, in a complete application graph, actors can be of two kinds: action
actors and context actors. With each action offered by the application to its
users (that is, with each command that is transferred by the user interface to
the underlying application), an action actor is associated. The number of action
actors is finite and equal to all the commands supported by the application.
Such an actor has a simple behavioural part and fires when the user performs
the appropriate action. In order for it to be ready-tofire, all links in its sub-
set of IF'S specified by its PRE function except "user or system action” links
must already contain tokens. This means that the user interface must have
reached the appropriate state (as represented by the condition links) and the
actor must belong in one of the contexts the user is currently working with (as
represented by the ”goal” link) for the user action to be available. Its functional
part contains the code that implements the application command, and produces
the appropriate effects (modelled with the production of tokens in the actor’s
subset of OF S specified by its POST function). This code is represented with
an EDFG subgraph. '

To model context of operation and to support the goal-based structuring of
user actions, context actors are used. These have a behavioural part that con-
tains many rules, while their functional part will in the future be associated with
some user interface widget to represent the action on the screen. Their function-
ality is to correctly interpret user actions in order to appropriately decompose
user goals into subgoals, so that eventually the correct action actor will fire. To
infer the context of operation, these actors contain rules that fire depending on
the user interface action that the user performs. Context actors may be formed
by combining action actors or context actors; this process may be applied an
adequate number of times so as to represent all user goals and subgoals.

In this way, subgraphs that correspond to user goals can be defined, with
the context of user actions encapsulated in their structure. As far as goals and
user and system actions are concerned, the following rule holds: lower level goals
are derived from user or system actions and goals of the next higher level. To
achieve such a transformation when a context actor is formed, Primitive Graphs
(PGs) [10] are used to specify the type of the context actor.

For example, suppose that one wants to specify interaction with a menu that
has four items, the second of which opens to a submenu. Interaction with such
a menu is depicted in figure 1. Note that a context actor (MENU) is used to
represent the entire menu functionality, while action actors (C1, C3, C4) are used
to represent the functions implemented by menu items 1, 3 and 4 respectively?.

Menu item 2 is represented by another context actor (C2), since when se-
lected, it. opens to a second-level menu. Also note how action actors can be
straightforwardly analyzed into EDFG actors (the semantics of this decomposi-
tion are not explicitly represented due to lack of space).

At any moment, there exists a number of actors (the actor—ready list) each
of which contains tokens in the subset of its JF.S links specified by its PRE
function, except the ”action” link: These actors represent the actions that are
available to the user. Traditional DFG models interpret the notion of state as
the distribution of tokens on the graph links. Our model extends this notion by
defining a state as the set of actors in the actor-ready list, or equivalently, the
set of user or system actions that the actors in the actor-ready list represent.
Since these actions correspond to goals in a lower-level, it may be equivalently

lin this figure thick and plain circles represent user action and other links, respectively, thick
and plain rectangles represent action and context actors, respectively, and dotted rectangles
represent EDFQG actors :

daisy
Rectangle

stated that a state is represented with the set of goals that may be achieved as
a consequence of user or system actions permitted by the actors in the actor—
ready list. State transitions occur as a consequence of an actor firing which
causes the output of tokens in the subset of actor’s OFS links specified by its
POST function, thus modifying the actor-ready list.

Since, however, an actor firing depends on its IF'S, it is clear that among a
set of otherwise identical actors that are ready to fire (the actor-ready list), the
one that fires is determined by the link of type "user or system action”. This
property can be used for the resolution of firing conflicts: all actors that can
eventually fire, do so0, and the consequences of firing appear in the graph in the
form of a new marking.

Referring to the example of figure 1 once more, PG EN creates one token on
every "goal” link of the constituent actors when user moves the mouse over the
menu. Thus, actors C1 to C4 become ready-to—fire. The one that will eventually
fire is determined by the next user action (clicking on one of the menu items), -
that will create one token on the "user action” link of one of these actors. This
actor is subsequently analyzed in the same way. Note that menu closes after
one item is selected, as specified by PG OPG, which produces one output token’
when a token is created on one of its input links.

In an interactive application, there exist several ”loci of control”, representing
the potential for the next user action; these loci are represented in SEPDS by
the actor-ready list. Furthermore, the existence of an "external event-handler”
(EEH) is assumed, which gets user input and sends it to the IDFGs. EEH does
not wait for response to the token it communicates; instead, it communicates a
token each time a user action is recorded and identified. The task of EEH is not
only to capture each user action, but also to assign to it the proper semantics
depending on the context. This mechanism, however, is invisible to the user.

5 Conclusions

In this paper a solution to the problem of combining an interaction model with an
application data model was presented. This solution, which has been adopted in
SEPDS, consists of using EDFG for application functionality specification, and
IDFG for specification of interaction. These two models are both based on Data
Flow Graphs and can be combined straightforwardly.

Designers that use SEPDS may either describe an application in the tradi-
tional bottom-up way (by first describing the functionality of the application to
be produced using EDFG and then by specifying the interactive features of the
application using IDFG) or in a top-down way (first, the interactive features are
specified, then the user goals are decomposed and the action paths are defined,
and finally, the application functionality is described). In both methods EDFG
graphs must be associated with the action actors of IDFG and IDFG actors must
be combined to represent user interface functions. Note, however, that in the
latter method the applications that will be produced are user—centered in that
they directly incorporate the user perspective. Then the prototyping tools of
SEPDS may be used to test the appearance and functionality of the application.

The importance of this process lies in that designers do not have to construct
the user interface, as is usually the case with other user interface generators.
Instead, they specify the flow of interaction between projected end—users and
the application to be produced. To do this, designers must specify the actions
that will at any moment be available to end-users, the effects that these actions
will produce on the screen, as well as the goals that may be achieved using the

application. That is why we claim that the presented model enables designers
to think in users terms.

g Q o MOVe MOouse Over menu
L] MENU
C EN]
click on click on click on
menu item 1 sgl sg2 sg3 menu item 3 menu item 4
sgd ; O
=== | clickon R A
'\ o-=' | menuitem 2 L Lo

Figure 1: An example of the usage of EDFG and IDFG models

A prototype of SEPDS has been recently completed, but it does not yet
support the IDFG model (the model, however, has been independently applied
to the descritpion of several interactive systems). We are currently in the process
of defining a user interface construction methodology that together with the

integration of IDFG, will enable us to test the feasibility of a semi-automated
production of user interfaces.

Acknowledgements
The authors wish to thank Mr. P. Fitsilis for fruitful discussions on the

usability of the approach, and the anonymous reviewers for their constructive
comments.

References

[1] J.D. Foley, D.J. M. J. de Baar and K.E. Mullet, Coupling application design
and user interface design. Proceedings of the CHI92 Conference: Striking a
balance, May 3-7, 1992, Monterey, USA, pp 259-266.

[2] J. Bonar and B. Liffick, Communicating with high-level plans. In Intelligent
User Interfaces (J. Sullivan and S. Tyler eds), ACM Press, 1991, pp 129-157.

daisy
Rectangle

1

(3]
[4]
[5]

[€]

[7]
[8]

1]

R. Buhr, G. Karam, C. Hayes and C. Woodside, Software CAD: A revoly.

tionary approach. IEEE Trans. Softw. Eng., SE-15(3), March 1989.

B.-"Curtis, M.I. Kellner and J. Over, Process modeling. Comm. of the ACM,
35(9), September 1992, pp 75-90.

A.J. Dix and C. Runciman, Abstract models of interactive systems. In Pro-
ceedings of the British Computer Society Conference on People and Com-
puters: Designing the Interface (P. Johnson and S. Cook eds), Cambridge
University Press, 1985, pp 13-22.

P. Henderson, editor, Proceedings of the second SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environ- -
ments. ACM SIGPLAN Notices, vol 22, January 1989.

C. Jard, J. Monin and R. Groz, Development of VEDA, a prototyping tool
for distributed algorithms. IEEE Trans. Softw. Eng., SE-14(3), March 1988.

A. Kameas, S. Papadimitriou, P. Pintelas and G. Pavlides, IDFG: an in-
teractive applications specification model with phenomenological proper-
ties. Proceedings of the EUROMICRO93 Conference, September 6-9, 1993,
Barcelona, Spain.

A. Levy, J. van Katwijk, G. Pavlides and F. Tolsma, SEPDS: A support
environment for prototyping distributed systems. Proceedings of the 1st

International Conference on System Integration, April 1990, New Jersey,
USA.

S. Papadimitriou, A. Kamea,s, P. Fitsilis and G. Pavlides, A new compres-
sion technique for tools that use data-flow graphs to model distributed
real-time applications. Proceedings of the 5th International Conference on

Software Engineering and its Applications, December 7-11 1992, Toulouse,
France, pp 235-244. _

H. Thimbleby, User Interface Design. ACM Press, 1990, p 470.

daisy
Rectangle

